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Abstract

We introduce DeepSeek-V3.2-Exp, an experimental sparse-attention model, which equips
DeepSeek-V3.1-Terminus with DeepSeek Sparse Attention (DSA) through continued train-
ing. With DSA, a fine-grained sparse attention mechanism powered by a lightning in-
dexer, DeepSeek-V3.2-Exp achieves significant efficiency improvements in both training
and inference, especially in long-context scenarios. The model checkpoints are available at
https://huggingface.co/deepseek-ai/DeepSeek-V3.2-Exp.

1. Architecture

Compared with DeepSeek-V3.1-Terminus, the last version of DeepSeek-V3.1, the only architec-
tural modification of DeepSeek-V3.2-Exp is the introduction of DeepSeek Sparse Attention (DSA)
through continued training.

Prototype of DSA. The prototype of DSA primarily consists of two components: a lightning
indexer and a fine-grained token selection mechanism.

The lightning indexer computes the index score I, ; between the query token h, € R? and a
preceding token h; € RY, determining which tokens to be selected by the query token:

H!

I = Y w};-ReLU (q ;- K!), (1)
j=1

where H' denotes the number of indexer heads; q/ ;€ RY and w! ; € Rare derived from the

query token h; and k! € R?' is derived from the preceding token h,. We choose ReLU as the
activation function for throughput consideration. Given that the lightning indexer has a small
number of heads and can be implemented in FPS8, its computational efficiency is remarkable.

Given the index scores {I;;} for each query token h,, our fine-grained token selection
mechanism retrieves only the key-value entries {c;} corresponding to the top-k index scores.
Then, the attention output u; is computed by applying the attention mechanism between the
query token h; and the sparsely selected key-value entries {c,}:

u, = Attn(h,, {cs |It,5 € Top-k(I[,;)}). ()
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Figure 1 | Attention architecture of DeepSeek-V3.2-Exp, where DSA is instantiated under MLA.
The green part illustrates how DSA selects the top-k key-value entries according to the indexer.

Instantiate DSA Under MLA. For the consideration of continued training from DeepSeek-V3.1-
Terminus, we instantiate DSA based on MLA (DeepSeek-Al, 2024) for DeepSeek-V3.2-Exp. At
the kernel level, each key-value entry must be shared across multiple queries for computational
efficiency (Yuan et al., 2025). Therefore, we implement DSA based on the MQA (Shazeer, 2019)
mode of MLAB where each latent vector (the key-value entry of MLA) will be shared across all
query heads of the query token. The DSA architecture based on MLA is illustrated in Figure
We also provide an open-source implementation of DeepSeek-VB.Z-ExpE] to specify the details
unambiguously.

2. Training

Starting from a base checkpoint of DeepSeek-V3.1-Terminus, whose context length has been ex-
tended to 128K, we perform continued pre-training followed by post-training to create DeepSeek-
V3.2-Exp.

2.1. Continued Pre-Training

The continued pre-training of DeepSeek-V3.2-Exp consists of two training stages. For both
stages, the distribution of training data is totally aligned with the 128K long context extension
data used for DeepSeek-V3.1-Terminus.

Dense Warm-up Stage. We first use a short warm-up stage to initialize the lightning indexer.
In this stage, we keep dense attention and freeze all model parameters except for the lightning
indexer. To align the indexer outputs with the main attention distribution, for the t-th query
token, we first aggregate the main attention scores by summing across all attention heads.

We illustrate the difference between the MQA and MHA modes of MLA in Appendix|[Al
“https://huggingface.co/deepseek-ai/DeepSeek-V3.2-Exp/tree/main/inference
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This sum is then L1-normalized along the sequence dimension to produce a target distribution
pe: € R". Based on p;., we set a KL-divergence loss as the training objective of the indexer:

L= Z D (pe,: || Softmax(I..)). 3)

For warm-up, we use a learning rate of 10~3. We train the indexer for only 1000 steps, with each
step consisting of 16 sequences of 128K tokens, resulting in a total of 2.1B tokens.

Sparse Training Stage. Following indexer warm-up, we introduce the fine-grained token
selection mechanism and optimize all model parameters to adapt the model to the sparse
pattern of DSA. In this stage, we also keep aligning the indexer outputs to the main attention
distribution, but considering only the selected token set S; = {s | Iis € Top—k(It,;) }:

-LI = Z ]DKL (pf,St ” Softmax(It,St)). (4)
t

It is worth noting that we detach the indexer input from the computational graph for separate
optimization. The training signal of the indexer is from only L', while the optimization of the
main model is according to only the language modeling loss. In this sparse training stage, we
use a learning rate of 7.3 x 107, and select 2048 key-value tokens for each query token. We train
both the main model and the indexer for 15000 steps, with each step consisting of 480 sequences
of 128K tokens, resulting in a total of 943.7B tokens.

2.2. Post-Training

After continued pre-training, we perform post-training to create the final DeepSeek-V3.2-Exp.
The post-training of DeepSeek-V3.2-Exp also employs sparse attention in the same way as
the sparse continued pre-training stage. In pursuit of a rigorous assessment of the impact
of introducing DSA, for DeepSeek-V3.2-Exp, we maintain the same post-training pipeline,
algorithm, and data as used for DeepSeek-V3.1-Terminus, which are detailed as follows.

Specialist Distillation. For each task, we initially develop a specialized model dedicated
exclusively to that particular domain, with all specialist models being fine-tuned from the same
pre-trained DeepSeek-V3.2 base checkpoint. In addition to writing tasks and general question-
answering, our framework encompasses five specialized domains: mathematics, competitive
programming, general logical reasoning, agentic coding, and agentic search. Each specialist
is trained with large-scale Reinforcement Learning (RL) computing. Furthermore, we employ
different models to generate training data for long chain-of-thought reasoning (thinking mode)
and direct response generation (non-thinking mode). Once the specialist models are prepared,
they are used to produce the domain-specific data for the final checkpoint. Experimental results
demonstrate that models trained on the distilled data achieve performance levels only marginally
below those of domain-specific specialists, with the performance gap being effectively eliminated
through subsequent RL training.

Mixed RL Training. For DeepSeek-V3.2-Exp, we still adopt Group Relative Policy Opti-
mization (GRPO) (DeepSeek-Al, 2025; Shao et al., 2024) as the RL training algorithm. Unlike
in previous DeepSeek models, which are trained with multi-stage reinforcement learning, we
merge reasoning, agent, and human alignment training into one RL stage. This approach ef-
fectively balances performance across diverse domains while circumventing the catastrophic
forgetting issues commonly associated with multi-stage training paradigms. For reasoning and



Benchmark ovetrio DeepSeek-V3.1-Terminus | DeepSeek-V3.2-Exp

MMLU-Pro &w 85.0 85.0
General GPQA-Diamond (passe) 80.7 79.9
Humanity’s Last Exam (passer) 21.7 19.8

Search BrowseComp (acc) 38.5 40.1
Ae gaélcnt B.rowseComp_zh (Acc) 45.0 479
SimpleQA (acc) 96.8 97.1
LiveCodeBench 40s-2505) (passe1) 749 74.1

Code Codeforces-Div] (rating) 2046 2121
Aider-Polyglot (ac) 76.1 74.5

C d SWE Verified (Agent mode) 684 67.8
Agent SWE-bench Multilingual g moio 57.8 57.9
Terminal—bench (Terminus 1 framework) 36.7 37.7

Math AIME 2025 (Pass@1) 884 893
HMMT 2025 (passar) 86.1 83.6

Table 1 | Evaluations of DeepSeek-V3.1-Terminus and DeepSeek-V3.2-Exp. Overall, DeepSeek-
V3.2-Exp does not show substantial performance degradation compared with DeepSeek-V3.1-
Terminus. The performance of DeepSeek-V3.2-Exp on GPQA, HLE, and HMMT 2025 is lower
than that of DeepSeek-V3.1-Terminus because DeepSeek-V3.2-Exp generates fewer reasoning
tokens. However, this performance gap closes when using intermediate checkpoints that
produce a comparable number of tokens.

agent tasks, we employ rule-based outcome reward, length penalty, and language consistency
reward. For general tasks, we employ a generative reward model where each prompt has its
own rubrics for evaluation. Our reward design carefully balances two key trade-offs: (1) length
versus accuracy and (2) language consistency versus accuracy.

3. Evaluations

Model Capabilities. We evaluate DeepSeek-V3.2-Exp on a suite of benchmarks, which focus on
diverse capabilities, and compare it with DeepSeek-V3.1-Terminus in Table [l While DeepSeek-
V3.2-Exp significantly improves computational efficiency on long sequences, we do not observe
substantial performance degradation compared with DeepSeek-V3.1-Terminus, on both short-
and long-context tasks. In addition, we also compare the reinforcement learning training curves
of DeepSeek-V3.2-Exp and DeepSeek-V3.1-Terminus, as shown in Figure |2} The performance
of both models on BrowseComp and SWE Verified improves steadily throughout the training
process, with closely aligned curves, which reflects the training stability of DSA.

Inference Costs. DSA reduces the core attention complexity of the main model from O(L?)
to O(Lk), where k (< L) is the number of selected tokens. Although the lightning indexer
still has a complexity of O(L?), it requires much less computation compared with MLA in
DeepSeek-V3.1-Terminus. Combined with our optimized implementation, DSA achieves a
significant end-to-end speedup in long-context scenarios. Figure 3| presents how token costs of
DeepSeek-V3.1-Terminus and DeepSeek-V3.2-Exp vary with the token position in the sequence.
These costs are estimated from benchmarking the actual service deployed on H800 GPUs, at
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Figure 2 | RL training curve of DeepSeek-V3.1-Terminus and DeepSeek-V3.2-Exp on BrowseC-
omp and SWE Verified. The solid and dashed lines denote the accuracy and average output
tokens, respectively.
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Figure 3 | Inference costs of DeepSeek-V3.1-Terminus and DeepSeek-V3.2-Exp on H800 clusters.

a rental price of 2 USD per GPU hour. Note that for short-sequence prefilling, we specially
implement a masked MHA mode to simulate DSA, which can achieve higher efficiency under
short-context conditions.

Future Validation in Real World. Although our internal evaluations show promising results of
DeepSeek-V3.2-Exp, we are actively pursuing further large-scale testing in real-world scenarios
to uncover potential limitations of the sparse attention architecture.
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Appendices
A. MHA and MQA Modes of MLA

output Hidden u; (OOOO -~ OOOO) output Hidden u, (OOOO ~ - OOO0)
{0} |I[_ o} I|l O0-~00 || {0}
[ Multi-Head Attenti;n (Core Attention) ] [ Multi-Query Attention (Core Attention)

I
input idden'h, (OO00 = = OO0 input Hidden b, (DOO0 - OOO0)
(a) MHA mode of MLA. (b) MQA mode of MLA.

Figure 4 | lllustration of the MHA and MQA modes of MLA. For DeepSeek-V3.1-Terminus, the
MHA mode is used for training and prefilling, while the MQA mode is used for decoding.

Figure [ illustrates two aspects of MLA — the MHA and MQA modes — as well as the
transformation between them.
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